Introduction to Topology

Notations

2 ^X	Power Set of X
$A - B$ or $A \setminus B$	$\{x\mid x\in A, x\notin B\}$
ΑIJΒ	Disjoint Union of A and B

Basic Point-Set Topology

Definition of Topological Space

set X with a collection \mathcal{O} of subsets of X, such that

- Both \varnothing and X are in \mathcal{O}
- The union of any number of sets in \mathcal{O} is in \mathcal{O}
- The intersection of finite number of sets in \mathcal{O} is in \mathcal{O}

Any $O \in \mathcal{O}$ is called open, and X - O is closed.

For closed sets A_k , $\bigcup_{i=1}^n A_i$ and $\bigcap_{i \in S} A_i$ are closed

Different Topologies of X

Trivial Topology $\mathcal{O} = \{\emptyset, X\}$

Finite Complement Topology $\mathcal{O} = \{O \mid O^c \text{ is finite}\} \cup \emptyset$

Euclidean(Usual) Topology

 $X = \mathbb{R}^n$, $\mathcal{O} = \{ 0 \mid 0 \text{ is union of open } n\text{-balls} \} \cup \emptyset$

Discrete Topology $\mathcal{O} = 2^X$

Interior, Closure and Boundary

Interior int (A) = $\{x \mid \exists \text{ open set } \mathcal{O}_x, \text{ s.t.} x \in \mathcal{O}_x \subseteq A\}$

Exterior ext $(A) = \{x \mid \exists \text{ open set } \mathcal{O}_x, \text{ s.t.} x \in \mathcal{O}_x \subseteq X - A\}$

Boundary $\partial A = \{x \mid \forall \mathcal{O}_x \ni x, \mathcal{O}_x \cap A \neq \emptyset, \mathcal{O}_x \cap (X-A) \neq \emptyset\}$

Closure $\overline{A} = int(A) \coprod \partial A$

 $\operatorname{ext}(A) = \operatorname{int}(X - A), \operatorname{int}(A) = \operatorname{ext}(X - A)$

 $X = int(A) \coprod \partial A \coprod ext(A)$

 $\overline{A \cup B} = \overline{A} \cup \overline{B}$ int $(A \cap B) = \text{int}(A) \cap \text{int}(B)$

Basis for a topology

$$\boldsymbol{\mathfrak{B}}$$
 where $\forall\,O\in\mathcal{O},O=\bigcup\limits_{B_k\in\boldsymbol{\mathfrak{B}}}B_k$

$$X = \bigcup_{B \in \mathcal{B}} B$$

$$\forall B_1, B_2 \in \mathcal{B} \text{ and } x \in B_1 \cap B_2,$$

$$\exists B_3 \in \mathcal{B}, \text{s.t.} x \in B_3 \subset B_1 \cap B_2$$

$$\Rightarrow \mathcal{B} \text{ is a basis}$$

Metric Spaces

Metric $d: X \times X \to \mathbb{R}$ such that

- d(x,y) > 0, and equality holds only if x = x
- d(x, y) = d(y, x)
- $d(x,y) \le d(x,z) + d(z,y)$

p-norm for $x,y \in \mathbb{R}^n$, $d(x,y) = \left(\sum_{i=1}^n |a_i - b_i|^p\right)^{\frac{1}{p}} (p \ge 1)$ Metric Space topology on X whose basis is a collection of A connected $\Rightarrow \overline{A}$ connected all open balls $B_r(x) = \{b \mid d(b, x) < r\}$ with $r > 0, x \in X$ All p-norm are equivalent \Rightarrow introduce the same topology

Subspaces

 $A \subset X$ then $\mathcal{O}_A = \{O \cap A \mid O \in \mathcal{O}_X\}$ is a subspace topology Path-connected \Rightarrow connected For open set $A \subset X$, B open in subspace $A \Leftrightarrow B$ open in X Suppose $f: X \to Y$ is conti. and onto, then For closed set $A \subset X$, B closed in $A \Leftrightarrow B$ closed in X

Continuity

 $f: X \to Y$ is continuous if $\forall O \in \mathcal{O}_Y, f^{-1}(O) \in \mathcal{O}_X$

 $f: X \to Y$ conti. $\Leftrightarrow f: X \to f(X)$ conti.

 $f: X \to Y \text{ conti.}, g: Y \to Z \text{ conti.} \Rightarrow gf: X \to Z \text{ conti.}$

 $f: X \to Y$ conti., $A \subset X \Rightarrow f|_A: A \to Y$ conti.

Homeomorphisms

A continuous bijective map $f: X \to Y$ with conti. inverse

Product Spaces

Product Topology of X×Y has basis $\{U \times V \mid U \in \mathcal{O}_X, V \in \mathcal{O}_Y\}$

Connectedness

Connected

 $X \neq \text{union of two disjoint nonempty open sets}$

 $\Leftrightarrow X \neq \text{union of two disjoint nonempty closed sets}$

 \Leftrightarrow the only open and closed sets in X are \varnothing and X

An interval $[\mathfrak{a},\mathfrak{b}]$ in $\mathbb R$ is connected

 $\{C_\alpha\}$ connected, mutually intersects $\Rightarrow \bigcup\limits_{\alpha} C_\alpha$ connected

Path-connected

 $\forall a, b \in X, \exists \text{ conti.f} : [0, 1] \rightarrow X, \text{ s.t.f}(0) = a, f(1) = b$

- $X \text{ connected} \Rightarrow Y \text{ connected}$
- X path-connected $\Rightarrow Y$ path-connected

Compactness

Compact

X is compact if every open cover of X has a finite subcover

An interval [a, b] in \mathbb{R} is compact

X is compact \Rightarrow subset of X is compact

X,Y are compact $\Rightarrow X \times Y$ is compact

 $X \subset R$ is compact $\Leftrightarrow X$ is closed and bounded

Suppose $f: X \to Y$ is conti. and onto, then

• $X \text{ compact} \Rightarrow Y \text{ compact}$

Hausdorff

 \forall different $x, y \in X, \exists$ disjoint open sets $U \ni x, V \ni y$

X is hausdorff, $A \subset X$ is compact $\Rightarrow A$ is closed

Properties of hausdorff spaces

- $\bullet\,$ In a hausdorff space, points are closed sets
- $\bullet\,$ A subspace of a hausdorff space is hausdorff
- Product space of two hausdorff spaces are hausdorff

Normal

 $\forall \, \mathrm{disjoint} \,\, \mathrm{closed} \,\, A,B \subset X, \exists \, \mathrm{disjoint} \,\, \mathrm{open} \,\, U \supset A,V \supset B$

X is compact and hausdorff $\Rightarrow X$ is normal